Data Integration and RDF

Georg Lausen Department of Computer Science Faculty of Engineering Albert-Ludwigs-University of Freiburg

1. Motivation

Biological Anthropology Freiburg Humanbiologie Hamburg University

Berliner Gesellschaft für Anthropologie, Ethnologie und Urgeschichte

Staatssammlung für Anthropologie und Paläoanatomie München

2. Data Integration

- The Web is the common platform which can be used by nearly everybody to publish and access data.
- Data from different sources needs to be integrated. The goal is to achieve interoperability based on URIs.
- Data integration does not come for free!
- ... its one of the oldest still not sufficiently solved problems of Computer Science.
- ... but fortunately, today we can build on many useful tools and technologies.
- Data integration will remain a complicated task because the application problem behind usually is complicated!

3. Data Representation

Tabular Representation: One institute

Collection						
Epoch	Region	Curator				
Prehistory	Greece	Adam				
Antiquity	Greece	Mary				
Prehistory	Rome	Peter				
Antiquity	Rome	Mary				

Tabular Representation: Two institutes

_

Collection						
	Epoch	Region	Curat	or		
	Prehistory	Greece	Adar	n		
	Antiquity	Greece	Mar	/		
	Prehistory	Rome	Pete	r		
	Antiquity	Rome	Mar	/		
Collection						
Epoch		Greed	ce	Rome		
Pre	history	Adar	n	Peter		
Antiquity		Mar	у	Mary		

Tabular Representation: Three institutes

Epoch	Collection Region	Curator		c	ollection	
Prehistor	y Greece	Adam	Ep	och	Greece	Rome
Antiquity	Greece	Mary	Pre	history	Adam	Peter
Prehistor	y Rome	Peter	An	tiquity	Mary	Mary
Antiquity	Rome	Mary				
Collection						
	Region	Preh	istory	Anti	quity	
	Greece	Ad	am	Μ	ary	-
	Rome	Pe	ter	Μ	ary	

	Collection							
Epoch	Region	Curator	(Collection			Collection	
Prehistory	Greece	Adam	Epoch	Greece	Rome	Region	Prehistory	Antiquity
Antiquity	Greece	Mary	Prehistory	Adam	Peter	Greece	Adam	Mary
Prehistory	Rome	Peter	Antiquity	Mary	Mary	Rome	Peter	Mary
Antiquity	Rome	Mary						
			Co	ollectio	on			
		Greece			Ro			
	E	Epoch	Curator		Epoch	Cura	itor	
	F	Prehistory	Adam		Prehistory	Pet	er	
	ļ	Antiquity	Mary		Antiquity	Ma	ry	

Tabular Representation: Four institutes

Data integration is a difficult task! Must be directed by an agreed upon ontology.

4. Ontology

► Thomas R. Gruber (1993):

An ontology is an explicit specification of a conceptualization. The term is borrowed from philosophy, where an ontology is a systematic account of Existence. For knowledge-based systems, what "exist" is exactly that which can be represented.

https://en.wikipedia.org/wiki/Conceptualization_(information_science): In information science a conceptualization is an abstract simplified view of some selected part of the world, ...

An explicit specification of a conceptualization is an ontology, and it may occur that a conceptualization can be realized by several distinct ontologies.

why not use Relational Databases?

- Relational Databases are a great well established technology. They are based on tables, which everybody can understand.
- Limitations:
 - Missing information (*null values*) complicates querying.
 - Not flexible, hard to extend once defined.
 - Integrated structure- and content-based querying is difficult.
 - Querying databases at different locations requires extra sophisticated technology.
- Not designed for achieving interoperability on the Web!

5. Resource Description Framework (RDF)

RDF W3C Recommendation; 2004; RDF 1.1 W3C Recommendation; 2014

- Everything is a *resource*; resources are either atomic values or identified by URIs.
- Information is represented by triples: (subject, predicate, object).

Assume a social network,	А	follows	В
e.g. Facebook or Twitter.	В	follows	С
Users A, B, C, D may have	С	follows	D
a follower relationship.	В	follows	D
Users may like certain items	А	likes	11
11, 12 and 13.	А	likes	12
	С	likes	12

Triples have a natural representation by directed, labelled graphs.

RDF-Triples and RDF-Graph

А follows В В follows С С follows D В follows D А likes 11 А likes 12 С 12 likes

6. RDF in the Real World

... from Louvre

<http://dbpedia.org/resource/Venus_de_Milo>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/Artwork> ;
<http://www.w3.org/2000/01/rdf-schema#label> "Venus de Milo"@en ;
<http://dbpedia.org/ontology/wikiPageExternalLink> <http://www.venusdemilo.gr/> ;
<http://dbpedia.org/property/artist> <http://dbpedia.org/resource/Alexandros_of_Antioch> ;
<http://dbpedia.org/property/type> <http://dbpedia.org/resource/Marble> ;
<http://dbpedia.org/property/year> "Between 130 and 100 BC"@en ;
<http://dbpedia.org/ontology/museum> <http://dbpedia.org/resource/The_Louvre> ;
...

Where to start reading?

RDF 1.1 Primer; W3C Working Group Note 24 June 2014; https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

7. SPARQL: RDF's SQL

RDF Graph and Query Pattern

SPARQL basic construct: Triple Pattern

SELECT * FROM {
 ?x likes ?w.
 ?x follows ?y.
 ?y follows ?z.
 ?z likes ?w }

8. Finally, more on RDF

RDF Stores - eithe	er nativ Subject	<mark>e or b</mark> Predica	asec ate	<mark>l on a</mark> Object	Rela	tional	Datab	ase
Triple Store:	A	follow	S	B	_			
	С	likes		12				
		follo	ws				likes	
	S	ubject	Obj	ect		Subject	t Obi	ect
Vertical Partitioning:		A	E	3	-	A	1	
0		В	(-		А	12	2
		C B)		С	12	2
		Ъ	L	,				
	Subjec	t follo	ws	likes				
	A	E	3	11				
Property Tables	А	B	3	12				
Froperty Table.	В	C						
	В	D)					
	С	D)	12				

RDF and the Semantic Web

- ▶ RDF is the *lingua franca* for the Semantic Web.
- W3C: The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries".

Tim Berners-Lee: The Semantic Web isn't just about putting data on the web. It is about making links, so that a person or machine can explore the web of data. With linked data, when you have some of it, you can find other, related, data.

W3C Web Ontoloy Language (OWL): OWL facilitates greater machine interpretability of Web content than that supported by RDF by providing additional vocabulary along with a formal semantics.

OWL adds formal (logical) reasoning to ontologies.